

74F579 8 -bit bidirectional binary counter (3-State)

FEATURES

- Fully synchronous operation
- Multiplexed 3-State I/O ports for bus oriented applications
- Built in cascading carry capability
- U/D pin to control direction of counting
- Separate pins for Master reset and Synchronous operation
- Center power pins to reduce effects of package inductance
- Count frequency 115 MHz Typ
- Supply current 100 mA Typ
- See 74F269 for 24-pin separate I/O port version
- See 74F779 for 16-pin version

DESCRIPTION

The 74F579 is a fully synchronous 8 -stage Up/Down Counter with multiplexed 3-State I/O ports for bus-oriented applications. It features a preset capability for programmable operation, carry look-ahead for easy cascading and a U/D input to control the direction of counting. All state changes, except for the case of asynchronous reset, are initiated by the rising edge of the clock. TC output is not recommended for use as a clock or asynchronous reset due to the possibility of decoding spikes.

PIN CONFIGURATION

ORDERING INFORMATION

TYPE	TYPICAL $\mathrm{f}_{\text {MAX }}$	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 579	115 MHz	100 mA

ORDERING INFORMATION

DESCRIPTION	COMMERCIAL RANGE $V_{\text {cc }}=5 \mathrm{~V} \pm 10 \%$, $\mathrm{T}_{\mathrm{amb}}=0$ to $+70{ }^{\circ} \mathrm{C}$	PKG DWG \#
20-Pin Plastic DIP	N74F579N	SOT146-1
20-Pin Plastic SOL	N74F579D	SOT163-1

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH / LOW
$\mathrm{l} / \mathrm{O}_{\mathrm{n}}$	Data Inputs	3.5/1.0	$70 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
	Data Outputs	150/40	3.0 mA / 24 mA
$\overline{P E}$	Parallel Enable input (active Low)	1.0/1.0	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
U/D	Up/Down count control input	1.0/1.0	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
MR	Master Reset input (active Low)	1.0/1.0	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
SR	Synchronous Reset input (active Low)	1.0/1.0	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
CEP	Count Enable Parallel input (active Low)	1.0/1.0	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
CET	Count Enable Trickle input (active Low)	1.0/1.0	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
CS	Chip Select input (active Low)	1.0/1.0	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
OE	Output Enable input (active Low)	1.0/1.0	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
CP	Clock input (active Rising Edge)	1.0/1.0	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
TC	Terminal Count Output (active Low)	50/33	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE: One (1.0) FAST Unit Load (U.L.) is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

FUNCTION TABLE

INPUTS									OPERATING MODE
MR	SR	CS	PE	CEP	CET	U/D	OE	CP	
X	X	H	X	X	X	X	X	X	I/O0 to I/O7 in high impedance (PE disabled)
X	X	L	H	X	X	X	H	X	I/O0 to I/O7 in high impedance
X	X	L	H	X	X	X	L	X	Flip-flop output appears on I/On lines
L	X	X	X	X	X	X	X	X	Asynchronous reset for all flip-flops
H	L	X	X	X	X	X	X	\uparrow	Synchronous reset for all flip-flops
H	H	L	L	X	X	X	X	\uparrow	Parallel load all flip-flops
H	H			H	X	X	X	\uparrow	Hold
H	H			X	H	X	X	\uparrow	Hold (TC held High)
H	H			L	L	H	X	\uparrow	Count up
H	H			L	L	L	X	\uparrow	Count down

[^0]

ABSOLUTE MAXIMUM RATINGS

(Operation beyond the limits set forth in this table may impair the useful life of the device.
Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER		RATING	UNIT
V_{CC}	Supply voltage		-0.5 to +7.0	V
$\mathrm{V}_{\text {IN }}$	Input voltage		-0.5 to +7.0	V
I_{IN}	Input current		-30 to +5	mA
V_{O}	Voltage applied to output in High output state		-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
Io	Current applied to output in Low output state	TC	40	mA
		1/O0	48	mA
$\mathrm{T}_{\text {amb }}$	Operating free-air temperature range		0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage temperature		-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		LIMITS			UNIT
			MIN	NOM	MAX	
$\mathrm{V}_{\text {CC }}$	Supply voltage		4.5	5.0	5.5	V
$\mathrm{V}_{1 \mathrm{H}}$	High-level input voltage		2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage				0.8	V
I_{IK}	Input clamp current				-18	mA
${ }^{1} \mathrm{OH}$	High-level output current	TC			-1	mA
		$1 / \mathrm{O}_{\mathrm{n}}$			-3	mA
${ }_{\text {loL }}$	Low-level output current	TC			20	mA
		$1 / \mathrm{O}_{\mathrm{n}}$			24	mA
$\mathrm{T}_{\text {amb }}$	Operating free-air temperature range		0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS

(Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$			LIMITS			UNIT			
			MIN	TYP ${ }^{2}$	MAX							
V_{OH}	High-level output voltage	TC				$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, \\ \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN} \\ \mathrm{~V}_{\mathrm{IL}}=0.0 \mathrm{~V}, \\ \text { for } \mathrm{MR}, \mathrm{CP} \text { inputs) } \\ \hline \end{gathered}$	$\mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.5			V
			$\pm 5 \% \mathrm{~V}_{\text {CC }}$	2.7	3.4				V			
		$\mathrm{I} / \mathrm{O}_{\mathrm{n}}$	$\mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.4		3.3		V			
				$\pm 5 \% \mathrm{~V}_{\text {CC }}$	2.7		3.3		V			
VoL	Low-level output voltage		$\begin{aligned} & V_{C C}=M I N, \\ & V_{I L}=M A X, \\ & V_{I H}=M I N \end{aligned}$	$\mathrm{loL}=\mathrm{MAX}$,	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.50	V			
			$\pm 5 \% \mathrm{~V}_{\text {CC }}$			0.35	0.50	V				
$\mathrm{V}_{\text {IK }}$	Input clamp voltage			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{1}=\mathrm{I}_{\mathrm{IK}}$				-0.73	-1.2	V		
1	Input current at maximum input voltage	$1 / O_{n}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=5.5 \mathrm{~V}$					1	mA			
		others	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$			
$\mathrm{IIH}^{\text {H }}$	High-level input current	except $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$			
I/L	Low-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$					-0.6	mA			
$\mathrm{lozh}^{+} \mathrm{IH}$	Off-state output current High-level voltage applied	$1 / O_{n}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$					70	$\mu \mathrm{A}$			
$\mathrm{l}_{\text {OZL }} \mathrm{I}_{\text {IL }}$	Off-state output current Low-level voltage applied		$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$					-600	$\mu \mathrm{A}$			
los	Short-circuit output current ${ }^{3}$		$V_{C C}=\mathrm{MAX}$			-60		-150	mA			
Icc	Supply current (total)	$\mathrm{I}_{\mathrm{CCH}}$	$V_{C C}=\mathrm{MAX}$				95	135	mA			
		ICCL					105	145	mA			
		$\mathrm{I}_{\text {CCZ }}$					105	150	mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under Recommended Operating Conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter test, los tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{cC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=0 \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			MIN	TYP	MAX	MIN	MAX	
$\mathrm{f}_{\text {MAX }}$	Maximum clock frequency	Waveform 1	100	115		80		MHz
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay CP to $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$	Waveform 1	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 10.5 \\ & 10.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \hline 11.5 \\ & 11.5 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{pLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay CP to TC	Waveform 1	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 10.0 \\ & 10.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 11.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{pHHL}} \\ & \hline \end{aligned}$	Propagation delay U/D to TC	Waveform 4	$\begin{aligned} & 3.5 \\ & 4.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.5 \\ & 6.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 4.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PH}} \\ & \hline \end{aligned}$	Propagation delay CET to TC	Waveform 3	$\begin{aligned} & 3.5 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 8.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\mathrm{t}_{\text {PHL }}$	Propagation delay MR to $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$	Waveform 2	5.0	7.0	9.0	5.0	10.0	ns
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PHHL}} \\ & \hline \end{aligned}$	Propagation delay MR to TC	Waveform 4	$\begin{aligned} & 4.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 8.0 \\ & \hline \end{aligned}$	$\begin{gathered} 9.0 \\ 10.5 \\ \hline \end{gathered}$	$\begin{aligned} & 4.0 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 10.5 \\ & 12.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{t} \text { PZH }} \\ & \mathrm{t}_{\mathrm{pZLL}} \\ & \hline \end{aligned}$	Output Enable time CS to I / O_{n}	Waveform 6 Waveform 7	$\begin{aligned} & 4.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & \hline 8.5 \\ & 10.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.5 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 10.0 \\ & 11.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \text { tphz } \\ & \text { tpLZ } \\ & \hline \end{aligned}$	Output Disable time $\overline{\mathrm{CS}}$ to $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$	Waveform 6 Waveform 7	$\begin{aligned} & 3.0 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.0 \\ & 7.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.5 \\ & 9.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & \hline \end{aligned}$	$\begin{gathered} 9.0 \\ 11.0 \\ \hline \end{gathered}$	$\begin{aligned} & \text { ns } \\ & \mathrm{ns} \end{aligned}$
$\begin{aligned} & \text { tpzH } \\ & \text { tpzL } \\ & \hline \end{aligned}$	Output Enable time PE to I / O_{n}	Waveform 6 Waveform 7	$\begin{aligned} & 3.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \hline 4.5 \\ & 6.5 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 8.0 \\ 10.0 \\ \hline \end{gathered}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & \hline \end{aligned}$	$\begin{gathered} 9.0 \\ 11.0 \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{array}{r} \text { tphz } \\ \text { tpLZ } \\ \hline \end{array}$	Output Disable time PE to I/On	Waveform 6 Waveform 7	$\begin{aligned} & 3.0 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 4.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.0 \\ & 8.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \hline \mathrm{t}_{\text {PZH }} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Disable time OE to I / O_{n}	Waveform 6 Waveform 7	$\begin{aligned} & 2.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.0 \\ & 9.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.5 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 8.5 \\ 10.5 \\ \hline \end{gathered}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \text { tpHz } \\ & \text { tpLZ } \\ & \hline \end{aligned}$	Output Enable time OE to I / O_{n}	Waveform 6 Waveform 7	$\begin{aligned} & 1.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.5 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{cc}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=0 \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			MIN	TYP	MAX	MIN	MAX	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low $1 / O_{n}$ to CP	Waveform 5	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$			4.0 4.0		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{n}}(\mathrm{H}) \\ & \mathrm{th}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold time, High or Low $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$ to CP	Waveform 5	0			0		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low U/D to CP	Waveform 5	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$			9.0 9.0		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{th}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold time, High or Low U/D to CP	Waveform 5	0			0		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low PE, SR or CS to CP	Waveform 5	$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$			$\begin{aligned} & 10.0 \\ & 10.0 \\ & \hline \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L} \end{aligned}$	Hold time, High or Low PE, SR or CS to CP	Waveform 5	0			0		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup time, High or Low CEP or CET to CP	Waveform 5	$\begin{aligned} & 5.0 \\ & 9.0 \\ & \hline \end{aligned}$			$\begin{gathered} \hline 5.5 \\ 10.5 \\ \hline \end{gathered}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{n}}(\mathrm{H}) \\ & \mathrm{th}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold time, High or Low CEP or CET to CP	Waveform 5	0			0		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	CP Pulse width, High or Low	Waveform 1	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$			4.5 4.5		$\begin{aligned} & \mathrm{ns} \\ & \text { ns } \end{aligned}$
$\mathrm{t}_{\mathrm{w}}(\mathrm{L})$	$\overline{M R}$ Pulse width, Low	Waveform 2	3.0			3.0		ns
$\mathrm{t}_{\text {rec }}$	Recovery time, MR to CP	Waveform 2	4.0			4.5		ns

AC WAVEFORMS

NOTE: For all waveforms $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$.
The shaded areas indicate when the input is permitted to change for predictable output performance.

Waveform 1. Propagation Delay, Clock Input to Output, Clock Pulse Width and Maximum Clock Frequency

Waveform 3. Propagation Delay, CET Input to Terminal Count Output

Waveform 5. Setup and Hold Times

Waveform 7. 3-State Output Enable Time to Low Level and Output Disable Time from Low Level

Waveform 2. Master Reset Pulse Width, Master Reset to Output Delay and Master Reset to Clock Recovery Time

Waveform 4. Propagation Delay, U/D and MR Inputs to Terminal Count Output

Waveform 6. 3-State Output Enable Time to High Level and Output Disable Time from High Level

TEST CIRCUIT AND WAVEFORMS

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	$\underset{\max }{\mathrm{A}}$	A_{1} min.	$\underset{\max }{\mathrm{A}_{2}}$	b	b_{1}	c	$\mathrm{D}^{(1)}$	$E^{(1)}$	e	\mathbf{e}_{1}	L	M_{E}	M_{H}	w	$Z_{\text {max. }}^{(1)}$
mm	4.2	0.51	3.2	$\begin{aligned} & 1.73 \\ & 1.30 \end{aligned}$	$\begin{aligned} & 0.53 \\ & 0.38 \end{aligned}$	$\begin{aligned} & 0.36 \\ & 0.23 \end{aligned}$	$\begin{aligned} & 26.92 \\ & 26.54 \end{aligned}$	$\begin{aligned} & 6.40 \\ & 6.20 \end{aligned}$	2.54	7.62	$\begin{aligned} & 3.60 \\ & 3.05 \end{aligned}$	$\begin{aligned} & 8.25 \\ & 7.80 \end{aligned}$	$\begin{gathered} 10.0 \\ 8.3 \end{gathered}$	0.254	2.0
inches	0.17	0.020	0.13	$\begin{aligned} & 0.068 \\ & 0.051 \end{aligned}$	$\begin{aligned} & 0.021 \\ & 0.015 \end{aligned}$	$\begin{aligned} & 0.014 \\ & 0.009 \end{aligned}$	$\begin{aligned} & 1.060 \\ & 1.045 \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.24 \end{aligned}$	0.10	0.30	$\begin{aligned} & 0.14 \\ & 0.12 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.31 \end{aligned}$	$\begin{aligned} & 0.39 \\ & 0.33 \end{aligned}$	0.01	0.078

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT146-1		MS-001	SC-603	\square -	$\begin{aligned} & 95-05-24 \\ & 99-12-27 \end{aligned}$

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	$\begin{gathered} \mathrm{A} \\ \max . \end{gathered}$	A_{1}	A_{2}	A_{3}	b_{p}	c	$\mathrm{D}^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$Z^{(1)}$	θ
mm	2.65	$\begin{aligned} & 0.30 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 2.45 \\ & 2.25 \end{aligned}$	0.25	$\begin{aligned} & 0.49 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.23 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 12.6 \end{aligned}$	$\begin{aligned} & 7.6 \\ & 7.4 \end{aligned}$	1.27	$\begin{aligned} & 10.65 \\ & 10.00 \end{aligned}$	1.4	$\begin{aligned} & 1.1 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.0 \end{aligned}$	0.25	0.25	0.1	0.9 0.4	$\begin{aligned} & 8^{0} \\ & 0^{\circ} \end{aligned}$
inches	0.10	$\begin{aligned} & 0.012 \\ & 0.004 \end{aligned}$	$\begin{aligned} & 0.096 \\ & 0.089 \end{aligned}$	0.01	$\begin{aligned} & 0.019 \\ & 0.014 \end{aligned}$	$\begin{aligned} & 0.013 \\ & 0.009 \end{aligned}$	$\begin{aligned} & 0.51 \\ & 0.49 \end{aligned}$	$\begin{aligned} & 0.30 \\ & 0.29 \end{aligned}$	0.050	$\begin{aligned} & 0.419 \\ & 0.394 \end{aligned}$	0.055	$\begin{aligned} & 0.043 \\ & 0.016 \end{aligned}$	$\begin{aligned} & 0.043 \\ & 0.039 \end{aligned}$	0.01	0.01	0.004	$\begin{aligned} & 0.035 \\ & 0.016 \end{aligned}$	

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT163-1	075E04	MS-013			$\begin{aligned} & -97-05-22 \\ & 99-12-27 \end{aligned}$

NOTES

Data sheet status

Data sheet status	Product status	Definition [1]
Objective specification	Development	This data sheet contains the design target or goal specifications for product development. Specification may change in any manner without notice.
Preliminary specification	Qualification	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.
Product specification	Production	This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.

[1] Please consult the most recently issued datasheet before initiating or completing a design.

Definitions

Short-form specification - The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.
Limiting values definition - Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information - Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support - These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.
Right to make changes - Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors

811 East Arques Avenue

P.O. Box 3409

Sunnyvale, California 94088-3409
Telephone 800-234-7381

All rights reserved. Printed in U.S.A.
Date of release: 01-01
Document order number:
939775007887

PHILIPS

[^0]: $\mathrm{H}=$ High voltage level
 $\mathrm{L} \quad=\quad$ Low voltage level
 $\mathrm{X}=$ Don't care
 $\uparrow \quad=$ Low-to-High clock transition
 (not LL) = $\overline{\mathrm{CS}}$ and $\overline{\mathrm{PE}}$ should never be Low voltage level at the same time.

